Sports nutrition jobs
The authors are particularly grateful for the thorough and excellent review by Jorn Trommelen (Maastricht University, The Netherlands) and Raza Bashir (Iovate Health Sciences International Inc https://steelglassconsulting.com., Canada). We would like to thank all the participants and researchers who contributed to the research studies and reviews described in this position stand.
The ISSN is the world’s leader in providing science-based sports nutrition and supplement information. Our peer-reviewed journal (JISSN), conferences, and attendees are the key influencers and thought-leaders in the sports nutrition and supplement field.
Most of the scientific research investigating the effects of protein intake on exercise performance has focused on supplemental protein intake. From a broad perspective, the dependent measures of these studies can be categorized into two domains:
International society sports nutrition
In summary, while research investigating the addition of supplemental protein to a diet with adequate energy and nutrient intakes is inconclusive in regards to stimulating strength gains in conjunction with a resistance-training program to a statistically significant degree, greater protein intakes that are achieved from both dietary and supplemental sources do appear to have some advantage. Hoffman and colleagues reported that in athletes consuming daily protein intakes above 2.0 g/kg/d which included protein intakes from both diet and supplements, a 22% and 42% increase in strength was noted in both the squat and bench press exercises during off-season conditioning in college football players compared to athletes that consumed only the recommended levels (1.6–1.8 g/kg/d) for strength/power athletes. Further, it is important to highlight that in most studies cited, protein intervention resulted in greater but non-statistically significant strength improvements as compared to the placebo/control condition. Cermak and colleagues pooled the outcomes from 22 separate clinical trials to yield 680 subjects in their statistical analysis and found that protein supplementation with resistance training resulted in a 13.5 kg increase (95% Confidence Interval: 6.4–20.7 kg) in lower-body strength when compared to changes seen when a placebo was provided. A similar conclusion was also drawn by Pasiakos et al. in a meta-analysis where they reported that in untrained participants, protein supplementation might exert very little benefit on strength during the initial weeks of a resistance training program, but as duration, frequency and volume of resistance training increased, protein supplementation may favorably impact skeletal muscle hypertrophy and strength.
Filtration methods differ, and there are both benefits and disadvantages to each. The two most popular methods of filtration of a given protein are the use of ion exchange and micro/ultrafiltration methods. Ion exchange exposes a given protein source, such as whey, to hydrochloric acid and sodium hydroxide, thereby producing an electric charge on the proteins that can be used to separate them from lactose and fat . The advantage of this method is that it is relatively cheap and produces the highest protein concentration . The disadvantage is that ion exchange filtration typically denatures some of the valuable immune-boosting, anti-carcinogenic peptides found in whey . Cross-flow microfiltration, and ultra-micro filtration are based on the premise that the molecular weight of whey protein is greater than lactose, and use 1 and 0.25-μm ceramic membranes, respectively, to separate the two. As a result, whey protein is trapped in the membranes but the lactose and other components pass through. The advantage is that these processes do not denature valuable proteins and peptides found in whey, so the protein itself is deemed to be of higher quality . The main disadvantage is that this filtration process is typically costlier than the ion exchange method.
In addition to these studies that spanned one to three weeks, several acute-response (single feeding and exercise sessions) studies exist, during which protein was added to a carbohydrate beverage prior to or during endurance exercise. Similarly, most of these interventions also reported no added improvements in endurance performance when protein was added to a carbohydrate beverage as compared to carbohydrate alone . An important research design note, however, is that those studies which reported improvements in endurance performance when protein was added to a carbohydrate beverage before and during exercise all used a time-to-exhaustion test . When specifically interested in performance outcomes, a time trial is preferred as it better mimics competition and pacing demands.
To date, only a few studies involving nighttime protein ingestion have been carried out for longer than four weeks. Snijders et al. randomly assigned young men (average age of 22 years) to consume a protein-centric supplement (27.5 g of casein protein, 15 g of carbohydrate, and 0.1 g of fat) or a noncaloric placebo every night before sleep while also completing a 12-week progressive resistance exercise training program (3 times per week). The group receiving the protein-centric supplement each night before sleep had greater improvements in muscle mass and strength over the 12-week study. Of note, this study was non-nitrogen balanced and the protein group received approximately 1.9 g/kg/day of protein compared to 1.3 g/kg/day in the placebo group. More recently, in a study in which total protein intake was equal, Antonio et al. studied young healthy men and women that supplemented with casein protein (54 g) for 8 weeks either in the morning (any time before 12 pm) or the evening supplementation (90 min or less prior to sleep). They examined the effects on body composition and performance . All subjects maintained their usual exercise program. The authors reported no differences in body composition or performance between the morning and evening casein supplementation groups. However, it is worth noting that, although not statistically significant, the morning group added 0.4 kg of fat free mass while the evening protein group added 1.2 kg of fat free mass, even though the habitual diet of the trained subjects in this study consumed 1.7 to 1.9 g/kg/day of protein. Although this finding was not statistically significant, it supports data from Burk et al. indicating that casein-based protein consumed in the morning (10 am) and evening (10:30 pm) was more beneficial for increasing fat-free mass than consuming the protein supplement in the morning (10 am) and afternoon (~3:50 pm). It should be noted that the subjects in the Burk et al. study were resistance training. A retrospective epidemiological study by Buckner et al. using NHANES data (1999–2002) showed that participants consuming 20, 25, or 30 g of protein in the evening had greater leg lean mass compared to subjects consuming protein in the afternoon. Thus, it appears that protein consumption in the evening before sleep might be an underutilized time to take advantage of a protein feeding opportunity that can potentially improve body composition and performance.
Research has shown that significant differences in skeletal muscle mass and body composition between older men who resistance train and either consume meat-based or lactoovovegetarian diet . Over a 12-week period, whole-body density, fat-free mass, and whole-body muscle mass (as measured by urinary creatinine excretion) increased in the meat-sourced diet group but decreased in the lactoovovegetarian diet group. These results indicate that not only do meat-based diets increase fat-free mass, but also they may specifically increase muscle mass, thus supporting the many benefits of meat-based diets. A diet high in meat protein in older adults may provide an important resource in reducing the risk of sarcopenia.
For those attempting to increase their calories, we suggest consuming small snacks between meals consisting of both a complete protein and a carbohydrate source. This contention is supported by research from Paddon-Jones et al. that used a 28-day bed rest model. These researchers compared three 850-cal mixed macronutrient meals to three 850-cal meals combined with three 180-cal amino acid-carbohydrate snacks between meals. Results demonstrated that subjects, who also consumed the small snacks, experienced a 23% increase in muscle protein fractional synthesis and successful maintenance of strength throughout the bed rest trial. Additionally, using a protein distribution pattern of 20–25 g doses every three hours in response to a single bout of lower body resistance exercise appears to promote the greatest increase in MPS rates and phosphorylation of key intramuscular proteins linked to muscle hypertrophy . Finally, in a series of experiments, Arciero and colleagues employed a protein pacing strategy involving equitable distribution of effective doses of protein (4–6 meals/day of 20–40 g per meal) alone and combined with multicomponent exercise training. Using this approach, their results consistently demonstrate positive changes in body composition and physical performance outcomes in both lean and overweight/obese populations . This simple addition could provide benefits for individuals looking to increase muscle mass and improve body composition in general while also striving to maintain or improve health and performance.
Degrees in sports nutrition
*This estimate includes online tuition and College of Health and Human Sciences fees and is for illustrative purposes only. Your hours and costs will differ depending on your transfer hours, course choices and your academic progress. See more about tuition and financial aid.
The Master’s Degree in Sports Training and Nutrition aims to train students in topics related to physical activity, training and nutrition. Participants will acquire knowledge about personal training, sports supplementation and nutritional coaching, in order to optimize the performance of athletes.
UCM’s resources, in addition to our recognition by LendEDU as a top-ranked university for low student debt, demonstrate our commitment to helping you get a quality education as part of your master’s degree in Sport Nutrition. For more information on program-specific scholarships, visit UCM Scholarship Finder.
“I could not have asked for a more passionate team of professors. The excitement and sincerity they brought to every lecture made for a remarkable learning environment. I believe this to be one of the strongest factors that led to my acceptance into the Dietetic Internship Program at the University of Kansas Medical Center.”
The two-year Fitness and Health Promotion Ontario College Diploma program prepares you to perform the roles and responsibilities of fitness and health consultants who plan, promote, and deliver a wide variety of services. These include activity and educational programs that enhance the health, fitness, and well-being of individuals and groups in diverse settings.